Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We investigate the potential of Spatially Offset Raman Spectroscopy (SORS) as a rapid, non-invasive screening tool deployable in the field to detect diethylene glycol (DEG) and ethylene glycol (EG) in medicinal syrups within closed containers. Measurements were performed on neat propylene glycol (PG) and glycerol, key components of many medicinal syrups, as well as marketed medicinal syrup formulations spiked with DEG and EG at various concentration levels to assess the technique’s limit of detection in real-life samples. SORS was able to detect these down to ~0.5% concentration level in neat PG for both DEG and EG compounds and ~1% concentration level for DEG and EG in neat glycerol. The DEG and EG detection thresholds for the marketed formulations measured through original bottles was ~1%, for Benylin (active ingredient: Glycerol) and Piriteze (active ingredient: Cetirizine Hydrochloride). For Calpol (active ingredient: Paracetamol) the detection limit was higher, ~2% for EG and ~5% for DEG. Although not reaching the International Pharmacopeial 0.1% detection threshold currently required for purity checks for human consumption, the method can still be used to detect products where DEG or EG has been wrongly used instead of PG or glycerol or if present in large quantities. The technique could also be used for raw material identification testing to ensure no mislabelling has occurred in pre-production stages and as a screening device in distribution chains to detect major deviations from permitted content in non-diffusely scattering, clear formulations, to help prevent serious adverse outcomes, such as acute renal failure and deaths.

Type

Journal

Journal of Pharmaceutical and Biomedical Analysis

Publisher

Elsevier

Publication Date

14/06/2025

Keywords

glycerol, propylene glycol, substandard, supply chain, Spatially Offset Raman Spectroscopy, falsified medicines, ethylene glycol, diethylene glycol, medicinal syrups