Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Researchers have created a mathematical model to predict genetic resistance to antimalarial drugs in Africa to manage one of the biggest threats to global malarial control.

Medical Center in Conakry, Guinea © Dominic Chavez, World Bank

Malaria is a life-threatening disease caused by parasites and spread to humans through infected mosquitos. It is preventable and curable, yet resistance to current antimalarial drugs is causing avoidable loss of life. The World Health Organisation estimated there were 241 million cases of malaria worldwide in 2020, with more than 600,000 deaths.

An international research team used data from the WorldWide Antimalarial Resistance Network (WWARN), a global, scientifically independent collaboration, to map the prevalence of genetic markers that indicate resistance to Plasmodium falciparum – the parasite that causes malaria.

The full story is available on the WWARN website

Read the publication 'Spatiotemporal spread of Plasmodium falciparum mutations for resistance to sulfadoxine-pyrimethamine across Africa, 1990–2020' on the PLOS Computational Biology website

Similar stories

Pilot study detects diverse DNA in ingredients of falsified tablets

A recent multidisciplinary pilot study, originating from LOMWRU and the Medicine Quality Research Group of IDDO and MORU, investigated whether bacterial, plant, fungal and animal DNA in the ingredients and from the environment (eDNA) could be detected from falsified (aka counterfeit) tablets.

COPCOV investigators meet, and prepare to submit for publication

On 15-16 Dec, COPCOV investigators from around the world met in Bangkok to review study results and plan next steps. Led by co-PIs Prof Sir Nick White and Dr Will Schilling, and funded by the Wellcome Trust, the MORU-led COPCOV ( Chloroquine prevention of coronavirus disease (COVID-19) in the healthcare setting) is the world’s largest multinational trial of COVID-19 prevention.

Expert Comment: Biotechnology allows us to make unprecedented interventions for conservation

In the wake of high-profile reports on the devastating toll human activity has had on global biodiversity, nations are expected to adopt the Convention on Biodiversity post-2020 framework that outlines measures to ensure humans live in harmony with nature.

Researchers call for antimicrobial resistance surveillance to be improved

The number of studies reporting antimicrobial resistance (AMR) data has increased in Africa, South and South East Asia according to new research in the International Journal of Infectious Diseases.

Are we getting tafenoquine dosing right?

Researchers analysing clinical trial data for the new antimalarial drug tafenoquine find that higher doses are needed to cure reliably vivax malaria infection.

New SMRU building opened in Thailand to provide health care to marginalized populations

The inauguration of a new joint Shoklo Malaria Research Unit (SMRU) and Borderland Health Foundation (BHF) Building took place in Mae Ramat, Thailand, this week.