Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Colistin is widely used in agriculture and aquaculture as prophylaxis, particularly in Asia. Recently, mcr-1 and other mobilizable genes conferring colistin resistance have spread globally in community and hospital populations. Characterizing mcr-1 mobile genetic elements and host genetic background is important to understand the transmission of this resistance mechanism. We conducted whole-genome sequencing of 94 mcr-1-positive Escherichia coli isolates (Mcr1-Ec isolates) from human and animal feces, food, and water in a community cohort (N = 87) and from clinical specimens from a referral hospital (N = 7) in northern Vietnam. mcr-1 was plasmid-borne in 71 and chromosomally carried in 25 (2 isolates contain one copy on chromosome and one copy on a plasmid) of 94 E. coli isolates from the community and hospital settings. All seven clinical isolates carried mcr-1 on plasmids. Replicon types of mcr-1-carrying plasmids included IncI2, IncP, IncX4, and IncFIA single replicons and combinations of IncHI2, IncN, and IncX1 multireplicons. Alignment of a long-read sequence of an IncI2 plasmid from animal feces with short-read sequences of IncI2 plasmids from a healthy human, water, and hospitalized patients showed highly similar structures (query cover from 90% to 98%, overall identity of >81%). We detected the potential existence of multireplicon plasmids harboring mcr-1 regardless of sample setting, confirming 10/71 with long-read sequencing. An intact/conserved Tn6330 transposon sequence or its genetic context variants were found in 6/25 Mcr1-Ec isolates with chromosomally carried mcr-1. The dissemination of mcr-1 is facilitated by a high diversity of plasmid replicon types and a high prevalence of the chromosomal Tn6330 transposon. IMPORTANCE The article presented advances our understanding of genetic elements carrying mcr-1 in Escherichia coli in both community and hospital settings. We provide evidence to suggest that diverse plasmid types, including multireplicon plasmids, have facilitated the successful transmission of mcr-1 in different reservoirs. The widespread use of colistin in agriculture, where a high diversity of bacteria are exposed, has allowed the selection and evolution of various transmission mechanisms that will make it a challenge to get rid of. Colocalization of mcr-1 and other antibiotic resistance genes (ARGs) on multireplicon plasmids adds another layer of complexity to the rapid dissemination of mcr-1 genes among community and hospital bacterial populations and to the slow pandemic of antimicrobial resistance (AMR) in general.

Original publication

DOI

10.1128/spectrum.01356-21

Type

Journal

Microbiology spectrum

Publication Date

09/02/2022

Volume

10

Addresses

Oxford University Clinical Research Unitgrid.412433.3, Wellcome Africa Asia Programme, Ha Noi, Vietnam.