Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The emergence of artemisinin resistance is a major obstacle to the global malaria eradication/elimination programs. Artemisinin is a very fast-acting antimalarial drug and is the most important drug in the treatment of severe and uncomplicated malaria. For the treatment of acute uncomplicated falciparum malaria, artemisinin derivatives are combined with long half-life partner drugs and widely used as artemisinin-based combination therapies (ACTs). Some ACTs have shown decreased efficacy in the Southeast Asian region. Fortunately, artemisinin has an excellent safety profile and resistant infections can still be treated successfully by modifying the ACT. This review describes the pharmacological properties of ACTs, mechanisms of artemisinin resistance and the potential changes needed in the treatment regimens to overcome resistance. The suggested ACT modifications are extension of the duration of the ACT course, alternating use of different ACT regimens, and addition of another antimalarial drug to the standard ACTs (Triple-ACT). Furthermore, a malaria vaccine (e.g., RTS,S vaccine) could be added to mass drug administration (MDA) campaigns to enhance the treatment efficacy and to prevent further artemisinin resistance development. This review concludes that artemisinin remains the most important antimalarial drug, despite the development of drug-resistant falciparum malaria.

Original publication

DOI

10.3389/fphar.2022.876282

Type

Journal

Frontiers in Pharmacology

Publisher

Frontiers Media SA

Publication Date

23/09/2022

Volume

13