Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background and objectivesAdequate supplies of donor blood remain a major challenge in sub-Saharan Africa. This is exacerbated by a lack of confirmatory testing for transfusion-transmitted infections by blood transfusion services (BTS), leading to significant blood disposal owing to putatively high seroprevalence rates amongst Ugandan blood donors. We aimed to ascertain the false discovery rate of the Architect anti-hepatitis C virus (HCV) screening assay and categorize screen-reactive samples into three groups: presumed false positive, active and past infection, and develop an algorithm for confirmatory testing.Materials and methodsA total of 470 screen-reactive HCV blood donations were retested using the Architect anti-HCV assay, an alternative antibody test (SD Biosensor) and a core antigen (cAg) test. signal-to cut-off (S/CO) ratios and pre-analytical factors (centrifugation speed, haemolysis check, time between collection and testing) were recorded. Based on the S/CO ratio evaluation, we propose a testing algorithm to guide supplemental tests.ResultsThe false discovery rate of the Architect anti-HCV assay was 0.84 as 395/470 (84%) screen-reactive samples had no evidence of HCV infection (SD Biosensor and cAg negative) (presumed false positive), 38/470 (8.1%) were antigenaemic, and 32/470 (6.8%) had evidence of past infection. The median S/CO ratios of the presumed false-positive and active infection samples were 1.8 and 17.3, respectively. The positive predictive value of HCV positivity in samples with ratios above 12 was 91.8%. On retesting, 104/470 (22.1%) samples became negative.ConclusionThe Architect anti-HCV assay has a very high false discovery rate in Ugandan BTSs, leading to excessive blood disposal. Pre-analytical factors likely contribute to this. An introduction of confirmatory testing using an algorithm based on S/CO ratio evaluation could limit unnecessary blood wastage and donor deferral.

Original publication

DOI

10.1111/vox.13364

Type

Journal

Vox sanguinis

Publication Date

11/10/2022

Addresses

Department of Infectious Disease, Division of Medicine, Imperial College, London, UK.