Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BackgroundTargeting interventions where most needed and effective is crucial for public health. Malaria control and elimination strategies increasingly rely on stratification to guide surveillance, to allocate vector control campaigns, and to prioritize access to community-based early diagnosis and treatment (EDT). We developed an original approach of dynamic clustering to improve local discrimination between heterogeneous malaria transmission settings.MethodsWe analysed weekly malaria incidence records obtained from community-based EDT (malaria posts) in Karen/Kayin state, Myanmar. We smoothed longitudinal incidence series over multiple seasons using functional transformation. We regrouped village incidence series into clusters using a dynamic time warping clustering and compared them to the standard, 5-category annual incidence standard stratification.ResultsWe included 1115 villages from 2016 to 2020. We identified eleven P. falciparum and P. vivax incidence clusters which differed by amplitude, trends and seasonality. Specifically the 124 villages classified as "high transmission area" in the standard P. falciparum stratification belonged to the 11 distinct groups when accounting to inter-annual trends and intra-annual variations. Likewise for P. vivax, 399 "high transmission" villages actually corresponded to the 11 distinct dynamics.ConclusionOur temporal dynamic clustering methodology is easy to implement and extracts more information than standard malaria stratification. Our method exploits longitudinal surveillance data to distinguish local dynamics, such as increasing inter-annual trends or seasonal differences, providing key information for decision-making. It is relevant to malaria strategies in other settings and to other diseases, especially when many countries deploy health information systems and collect increasing amounts of health outcome data.FundingThe Bill & Melinda Gates Foundation, The Global Fund against AIDS, Tuberculosis and Malaria (the Regional Artemisinin Initiative) and the Wellcome Trust funded the METF program.

Original publication

DOI

10.1016/j.epidem.2023.100682

Type

Journal

Epidemics

Publication Date

06/2023

Volume

43

Addresses

Aix Marseille Univ, IRD, INSERM, SESSTIM, Aix Marseille Institute of Public Health, ISSPAM, Marseille, France. Electronic address: eva.legendre@univ-amu.fr.

Keywords

Humans, Malaria, Malaria, Vivax, Incidence, Cluster Analysis, Seasons