Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractAcinetobacter baumannii is a significant cause of opportunistic hospital acquired infection and has been identified as an important emerging infection due to its high levels of antimicrobial resistance. Multidrug resistant A. baumannii has risen rapidly in Vietnam, where colistin is becoming the drug of last resort for many infections. In this study we generated spontaneous colistin resistant progeny (up to >256 μg/μl) from four colistin susceptible Vietnamese isolates and one susceptible reference strain (MIC <1.5 μg/μl). Whole genome sequencing was used to identify single nucleotide mutations that could be attributed to the reduced colistin susceptibility. We identified six lpxACD and three pmrB mutations, the majority of which were novel. In addition, we identified further mutations in six A. baumannii genes (vacJ, pldA, ttg2C, pheS and conserved hypothetical protein) that we hypothesise have a role in reduced colistin susceptibility. This study has identified additional mutations that may be associated with colistin resistance through novel resistance mechanisms. Our work further demonstrates how rapidly A. baumannii can generate resistance to a last resort antimicrobial and highlights the need for improved surveillance to identified A. baumannii with an extensive drug resistance profile.

Original publication

DOI

10.1038/srep28291

Type

Journal

Scientific Reports

Publisher

Springer Science and Business Media LLC

Publication Date

22/06/2016

Volume

6