Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Background A novel variant of influenza A (H1N1) is causing a pandemic and, although the illness is usually mild, there are concerns that its virulence could change through reassortment with other influenza viruses. This is of greater concern in parts of Southeast Asia, where the population density is high, influenza is less seasonal, human-animal contact is common and avian influenza is still endemic. Methods We developed an age- and spatially-structured mathematical model in order to estimate the potential impact of pandemic H1N1 in Vietnam and the opportunities for reassortment with animal influenza viruses. The model tracks human infection among domestic animal owners and non-owners and also estimates the numbers of animals may be exposed to infected humans. Results In the absence of effective interventions, the model predicts that the introduction of pandemic H1N1 will result in an epidemic that spreads to half of Vietnam's provinces within 57 days (interquartile range (IQR): 45-86.5) and peaks 81 days after introduction (IQR: 62.5-121 days). For the current published range of the 2009 H1N1 influenza's basic reproductive number (1.2-3.1), we estimate a median of 410,000 cases among swine owners (IQR: 220,000-670,000) with 460,000 exposed swine (IQR: 260,000-740,000), 350,000 cases among chicken owners (IQR: 170,000-630,000) with 3.7 million exposed chickens (IQR: 1.9 M-6.4 M), and 51,000 cases among duck owners (IQR: 24,000 - 96,000), with 1.2 million exposed ducks (IQR: 0.6 M-2.1 M). The median number of overall human infections in Vietnam for this range of the basic reproductive number is 6.4 million (IQR: 4.4 M-8.0 M). Conclusion It is likely that, in the absence of effective interventions, the introduction of a novel H1N1 into a densely populated country such as Vietnam will result in a widespread epidemic. A large epidemic in a country with intense human-animal interaction and continued co-circulation of other seasonal and avian viruses would provide substantial opportunities for H1N1 to acquire new genes.

Original publication

DOI

10.1186/1741-7015-7-43

Type

Journal

BMC Medicine

Publisher

Springer Science and Business Media LLC

Publication Date

12/2009

Volume

7